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Abstract—The increase of Internet application requirements,
such as throughput and delay, has spurred the need for trans-
port protocols with flexible transmission control. Current TCP
congestion control adopts an Additive Increase Multiplicative De-
crease (AIMD) algorithm that linearly increases or exponentially
decreases the congestion window based on transmission acknowl-
edgments. In this paper, we propose an AIMD-like media-aware
congestion control that determines the optimal congestion window
updating policy for multimedia transmission. The media-aware
congestion control problem is formulated as a Partially Observ-
able Markov Decision Process (POMDP), which maximizes the
long-term expected quality of the received multimedia application.
The solution of this POMDP problem gives a policy adapted to
multimedia applications’ characteristics (i.e., distortion impacts
and delay deadlines of multimedia packets). Note that to obtain
the optimal congestion policy, the sender requires the complete
statistical knowledge of both multimedia traffic and the network
environment, which may not be available in practice. Hence,
an online reinforcement learning in the POMDP-based solution
provides a powerful tool to accurately estimate the environment
and to adapt the source to network variations on the fly. Simula-
tion results show that the proposed online learning approach can
significantly improve the received video quality while maintaining
the responsiveness and TCP-friendliness of the congestion control
in various network scenarios.

Index Terms—Congestion control, learning technology, multi-
media communication.

I. INTRODUCTION

T CP dominates today’s communication protocols at the
transport layer in both wireless and wired networks, due

to its simple and efficient solutions for end-to-end flow control,
congestion control and error control of data transmission over IP
networks.However, despite the success of TCP, the existingTCP
congestion control is considered unsuitable for delay-sensitive,
bandwidth-intense, and loss-tolerant multimedia applications,
such as real-time audio streaming and video-conferences (see
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[1] and [2]). There are two main reasons for this. First, TCP is
error-free and trades transmission delay for reliability. In fact,
packets may be lost during transport due to network congestion
and errors. TCP keeps retransmitting the lost packets until they
are successfully transmitted, even if this requires a large delay.
The error-free restriction ignores delay deadlines of multimedia
packets, i.e., the time by which they must be decoded. Note that
even if multimedia packets are successfully received, they are
not decodable if they are received after their respective delay
deadlines. Second, TCP congestion control adopts an AIMD
algorithm.This results in afluctuatingTCP throughput over time,
which significantly increases the end-to-end packet transmission
delay, and leads to poor performance of multimedia applications
[2]. To mitigate these limitations, a plethora of research focused
on smoothing the throughput ofAIMD-based congestion control
for multimedia transmission (see [3] and [4]). These approaches
adopt various congestionwindowupdating policies to determine
how to adapt the congestion window size to the network envi-
ronment. However, these approaches seldom explicitly consider
the characteristics of multimedia applications, such as delay
deadlines and distortion impacts. Note that although UDP is
more suitable for real-time video streaming than TCP, there is a
tremendous need for video over TCP due to the development of
HTTP streaming that takes advantage of theweb caching system.
Moreover, many professional streaming systems use TCP be-
cause it can deal easily with firewalls. Hence, this motivates the
need of developing improved TCP congestion control solutions
for video streaming.
In this paper, we propose a media-aware POMDP-based con-

gestion control, referred to as Learning-TCP, which exhibits an
improved performance when transmitting multimedia. Unlike
the current TCP congestion control protocol that only adapts the
congestion window to the network congestion (e.g., the packet
loss rate in TCP Reno and the RTT in TCP Vegas), the proposed
congestion control algorithm also takes into account multimedia
packets’distortion impacts anddelaydeadlineswhenadapting its
congestionwindow size. Importantly, the proposedmedia-aware
solution only changes the congestion window updating policy
of the TCP protocol at the sender side, without requiring
modifications to the feedback mechanisms at the receiver side.
The multimedia quality obtained by receivers is impacted by

the network congestion incurred at bottleneck links. This infor-
mation is only partially observable by senders and is based on
feedback of network congestion signals. In order to capture the
dynamics created by the network congestion and to optimize
the expected long term quality of multimedia transmissions, we
formulate the media-aware congestion control problem using a
POMDP framework. The proposed framework allows users to
evaluate the network congestion dynamics over time, and pro-
vides the optimal congestion window updating policy that max-
imizes the long-term discounted reward. In this paper, we con-
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TABLE I
COMPARISONS OF CURRENT CONGESTION CONTROL SOLUTIONS FOR MULTIMEDIA STREAMING

sider that the multimedia quality is defined as the total distortion
reduction of the received multimedia packets.
In practice, the sender needs to learn the network envi-

ronment during transmission in order to adapt its congestion
control policy. Hence, in this paper, we propose an online
learning approach for solving the POMDP-based congestion
control problem. Cassandra and Littman proposed the Witness
algorithm in order to solve discounted finite-horizon POMDP
using value iteration (see [5] and [6]). Note that Chrisman
and McCallum studied, in [7] and [8], the problem of learning
a POMDP model in a reinforcement learning setting. They
used an extension of Q-learning [9] in order to approximate
Q-functions for POMDP. They proposed Replicated Q-learning
to generalize the Q-learning to vector valued states to solve
POMDP models. Rumelhart explored, in [10], the reinforce-
ment learning for POMDP models by adopting a belief-based
MDP framework. However, all these reinforcement learning
approaches suffer from the well-known curse of dimensionality
problem, meaning that a practical POMDP problem involves an
enormous state and action space, which significantly impacts
the complexity and the convergence time to solve the problem.
The authors of [11] proposed a TCP-friendly congestion control
for multimedia transmission. Unlike our proposed congestion
control, they did not propose an AIMD-like solution.
This paper presents a TCP-like window-based congestion

control schemes that uses history information, in addition to the
current window size and congestion feedback. A comparative
study of several existing congestion control mechanisms for
multimedia applications and the proposed solution is pre-
sented in Table I. In summary, the paper makes the following
contributions:

A. Media-Aware Congestion Control

The proposed Learning-TCP provides a media-aware ap-
proach to adapt the AIMD-like congestion control policy to both
varying network congestion and multimedia characteristics
taking into account source rates, distortion impacts and delay
deadlines of multimedia packets. Hence, the media-aware ap-
proach leads to a significantly improved multimedia streaming
performance.

B. POMDP-Based Adaptation in the Dynamic Environment

We propose a POMDP framework to formulate the media-
aware congestion control problem. It allows TCP senders to
determine the congestion window size that maximizes the ex-
pected long-term quality of multimedia applications. Further-
more, , network users have only partial knowledge about the
bottleneck link status. In fact, the number of packets in trans-
mission over the bottleneck link queue depends not only on the

congestion window of the user, which is known, but also on the
congestion windows of all the other users, which cannot be ob-
served. Therefore, the long term prediction and adaptation of
the POMDP framework under partial observation of the system
state is essential for multimedia streaming, since it can consider,
predict, and exploit the dynamic nature of the multimedia traffic
and the transmission environment, in order to optimize the ap-
plication performance.
The POMDP solution is based on a set of updating policies

composed of generic congestion control algorithms, with gen-
eral increase and decrease functions like: AIMD, Inverse In-
crease/Additive Decrease (IIAD), Square Root inversely pro-
portional Increase/proportional Decrease (SQRT), and Expo-
nential Increase/Multiplicative Decrease (EIMD).

C. Online Learning for Delay-Sensitive
Multimedia Applications

We unravel several structural properties of the optimal so-
lution. Based on this, we propose a practical low-complexity
online learning method to solve the POMDP-based congestion
control problem on-the-fly.
The paper is organized as follows. In Section II, we model

the media-aware congestion control problem that maximizes the
performance of multimedia applications. Then in Section III,
we formulate the problem using a POMDP based framework.
Structural results and the proposed online learning method are
discussed in Section IV. Section V provides simulation results
and Section VI concludes the paper.

II. MEDIA-AWARE CONGESTION CONTROL
PROBLEM FORMULATION

A. Network Settings

We assume that the network has a set of end users indexed
. Each user is composed of a sender node and a re-

ceiver node that establish an end-to-end transport layer connec-
tion. Let represents the congestion window size of the user
. The network system has some bottleneck links, which re-
sults in packet losses when buffers are overloaded. Note that
any user cannot observe the traffic generated by other users. In
fact, an end user can only infer the congestion status by ob-
serving feedback information from acknowledgments per .
For each acknowledgment, the end user observes a congestion
event (the packet being received
successfully or not by the receiver). We consider a time-slotted
system with a slot duration of one RTT. Moreover, we assume
that the user has a delay vector of all packets in its
output queue, with if
the -th packet in the queue is not transmitted during the th

. When the user receives a new packet from the upper
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Fig. 1. Congestion window size over time with different updating policies per
chunk.

layer, the delay of this packet equals 0, and is increased each
until the packet is transmitted successfully, or deleted by

the sender. In fact, before transmitting a packet, the user veri-
fies if , where is the deadline delay of
the packet. If not, it drops the packet. The observed information
is available to the sender through transmission acknowledg-

ments (ACK) built into the protocol.

B. Two-Level Congestion Control Adaptation

A TCP-like window-based congestion control scheme in-
creases the congestion window after successful transmission
of several packets, and decreases the congestion window upon
the detection of a packet loss event. A general description
regarding the congestion control window size variation is:

if
if

(1)

Let us define as the updating
policy that specifies the two congestion window size variation
functions (we refer to as the increasing function and

as the decreasing function), where represents the set of
all updating policies. Some existing examples of updating poli-
cies can be found in [3] and [4].
Unlike the existing TCP congestion control that fixes the con-

gestion window updating policy without considering applica-
tions’ characteristics, the proposed Learning-TCP uses a two-
level adaptation to update the congestion window. We define a
congestion control chunk as a time period, denoted by , for
user to periodically change its congestion window updating
policy. In fact, we allow a sender to update its policy at the be-
ginning of each chunk, which it cannot change until the next
chunk (see Fig. 1). Indeed, this paper focuses on how to opti-
mally determine the updating policy, at each chunk, in order to
improve the quality of multimedia applications.

C. Expected Multimedia Quality per Chunk

In this section, we discuss the objective of the proposed
media-aware congestion control. Denote the application pa-
rameters as for user in the th chunk,
where represents the source rate of the multimedia appli-
cation. The source rate is the average number of packets that
arrives at the transmission buffer per second. For example, in a
VoIP call, the source rate can be controlled and adapted to the
network environment, since there are usually rate control mod-
ules implemented in VoIP software. To accurately capture the
characteristics of the video packets, we adopt the sophisticated
video traffic model proposed in [13], which takes into account
the fact that video packets have different delay deadlines and

distortion impacts. We further assume an additive distortion
reduction function for multimedia applications as in [14],
[15] and [13], and is the additive distortion reduction per
packet in chunk . can be thought of as the media quality
improvement of each packet. In fact, the distortion impact

represents the amount by which the multimedia distortion
is reduced if one packet from the chunk is received at the
decoder side. The distortion impact computation is similar to
[16]. Note that the developed framework is also applicable
in the case when the packets within one chunk have different
distortion impact, where is a set of distortion impacts of
packets transmitted during the chunk .
The following equation depicts the expected distortion reduc-

tion per for an end user :

(2)

where represents the number of packet in the buffer of
the user , is the congestion window of the user at the
th and is the probability that a packet will be
rejected. Note that a packet rejected because of a congestion
event will be retransmitted by the sender. However, the
user will not retransmit a packet deleted because of the delay
constraint. The average distortion reduction in the th chunk is
expressed as follows:

(3)

Specifically, a POMDP framework allows users to eval-
uate the network congestion without perfect knowledge
of the overall system state. For each chunk, our proposed
Learning-TCP allows an user to select the optimal updating
policy that maximizes the expected distortion reduction
in a chunk , given application parameters . Thus, the
proposed algorithm performs the following optimization:

(4)

where is a discount factor. Note that when the application
has no delay deadline, i.e., , the objective function in
(4) is equivalent to maximizing the exponential moving average
throughput in the chunk.
During periods of severe congestion, our algorithm may not

be TCP-friendly, and therefore penalizes other TCP flows. We
describe, in the next section, how we adapt our algorithm to be
quality-centric and TCP-friendly.

D. TCP-Friendliness

TCP is not well-suited for emerging multimedia applica-
tions because it ignores QoS requirements of the multimedia
traffic. To address this issue, some approaches were proposed
using end-to-end congestion control schemes [17]. Since TCP
is widely used for traffic transport over the Internet, new
congestion control schemes should be TCP-Friendly. There-
fore, TCP-Friendly congestion control for multimedia has
recently become an active research topic (see [3] and [18]).
TCP-Friendliness requires that the average throughput of appli-
cations using new congestion control schemes does not exceed
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that of traditional TCP-transported applications under the same
circumstances (see [19]). Therefore, we examine the compet-
itive behaviors between TCP and our proposed congestion
control algorithm. It is straightforward and somehow intuitive
that updating policies in are not necessarily TCP-Friendly
(for example, and ). However, there exists
a non-empty subset of , whose policies do not violate the
TCP-friendliness rule.
It is well known that the TCP congestion control strategy in-

creases by one or decreases by half the congestion window. Let
us consider a scenario with a link having a capacity of packets
per RTT, shared between two flows, one TCP-transported and
the other using our media-aware congestion control algorithm.
The following proposition states that our Learning-TCP algo-
rithm can be TCP-Friendly.
Proposition 1: For all updating policies chosen from the set

, the proposed
Learning-TCP algorithm is TCP-Friendly.

Proof: See Appendix A.

III. POMDP FRAMEWORK FOR MEDIA-AWARE
CONGESTION CONTROL

In the proposed framework, users have only partial knowl-
edge about the congestion status of bottleneck links. We de-
fine the congestion factor , which represents the impact of
all users on the congestion status at bottleneck links. The con-
gestion factor can be seen as a congestion level or occupation
level of the bottleneck link.We denote the subscript in order to
differentiate this metric with a cost . represents the set of all
possible congestion factors. Since the user cannot observe the
traffic generated by other users and transmitted over the bottle-
neck links, the congestion factor is estimated based on history of
observations and actions. Therefore, we formulate the problem
with a POMDP framework. The objective function to optimize
can be rewritten as follows:

(5)

We denote by

the instantaneous reward of the end user at the th chunk.
Note that the end user tries to maximize the number of packets
successfully transmitted before their delay deadlines.
A. POMDP-Based Congestion Control

Based on (5), we define a POMDP-based congestion control
of user as follows:
1) Action: The policy of a user is a set of actions that the user

selects at every chunk. The action of a user at a given epoch is
to choose the appropriate congestion window updating policy.
We denote by the policy of the network user
where is its action at the th chunk. Note that represents
the congestion window updating policy at chunk .

2) State: The state is defined as .
The application parameters are known by user . However,
the congestion factor , which is impacted by the overall
traffic transmitted over the bottleneck link, cannot be directly
observed by users. The user has to infer the congestion factor
based on the observed information and feedback.
At each time slot, the system has a congestion factor . The

user takes an action , which induces the congestion factor to
transit to the state with probability . Having
the congestion factor , the user observes with probability

. The belief about the congestion factor is defined
as a function . The function represents the
probability distribution of the congestion factor at the th chunk
for user . Denote the chosen congestion factor (i.e., inferred by
the end user as the most likely of all possible congestion factors)
at the th chunk by . The belief distribution of the congestion
factor is updated as follows:

(6)

The denominator, , can be treated as a normal-
izing factor, independent of that causes to sum to 1.
The probability represents the average packet loss

rate in the th chunk when the congestion window size is ,
which can be calculated as follows:

(7)

where is the congestion level at the bottleneck link, which
is not observable by end users. However, the average packet
loss rate itself is observable by users, given a certain congestion
window .
3) Utility: The goal of the user is to maximize

the discounted reward defined in (5). A policy
that maximizes is called optimal policy

and specifies for each chunk , the optimal updating policy
to use. The optimal value function satisfies the

following Bellman equation:

(8)

The optimal policy at the th chunk is expressed as follows:

(9)

We prove, in the next section, the existence of the optimal sta-
tionary policy, and we show how to determine such policy for
our POMDP problem.

B. Existence of Optimal Stationary Policies

To limit the computation complexity and propose a low-cost
implementation for determining the optimal solution for
POMDP-based problems, we restrict our attention to the set of
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stationary policies. A policy is stationary if this policy does not
depend on the chunk . Note that we formulate our problem as
an infinite horizon POMDP with expected discounted reward.
The belief set is continuous, which may lead to an explosion

of the solution size and the computation complexity. There-
fore, we transform the belief set to a discrete set. We use an
aggregation function that maps the belief states into a discrete
set of beliefs. An example of aggregation function is presented
in Section IV. Moreover, for each belief, we assume that there
is a finite set of actions . Under these assumptions, Theorem
6.2.10 of [20] can be applied and we can assume the existence of
the optimal stationary policy for our POMDP problem. There-
fore, we restrict our problem to the set of stationary policies. We
can now omit the chunk index , as the optimal stationary policy
depends only on and . The goal of this POMDP problem is
therefore to find a sequence of updating policies that maxi-
mizes the expected reward. For each belief, the value function
can be formulated as follows:

(10)

Specifically, a powerful result of [21] and [22] says that the
optimal value function for our POMDP problem is Piecewise
Linear and Convex (PWLC) in the belief. Then, every value
function can be represented by a set of hyper-planes denoted
-vectors, , where . is up-

dated using the value iteration algorithm through the following
sequence of operations:

(11)

(12)

(13)

Note that each -vector is associated with an action that de-
fines the best updating policies for the previous chunks.
The th horizon value function can be expressed as follows:

(14)

Many algorithms have been proposed to implement solutions
for POMDP problems by manipulating -vectors using a com-
bination of set projection and pruning operations (see [21], [5]
and [23]).
The main difficulty of POMDP-based optimization is the pro-

hibitively high computational complexity and the assumption
that statistics, such as the state transition probability are known,
which may be not true in practice. To overcome this obstacle,
we propose an online learning method that allows the sender to
determine the optimal congestion control policy on-the-fly, with
a low computational complexity.

IV. ONLINE LEARNING

Solving a POMDP is an extremely difficult computational
problem. In this section, we show how a value function can be
updated on-the-fly, with a low computation complexity, in order
to solve the POMDP problem described in the previous section.
In the proposed learning model, a user maintains the state-value
function as a lookup table, which determines the
optimal policy in the current slot. In fact, the state-value func-
tion is updated as follows:

(15)

where is a learning rate factor satisfying
, e.g., . At the chunk , the user

gets application parameters and estimates the congestion
factor . Then he chooses the policy that maximizes

.
The large state space may prohibit an efficient learning

solution and may increase the complexity and the convergence
time of the algorithm. We propose to adopt an effective state
aggregation mechanism in order to reduce the complexity and
the convergence time of the learning algorithm. As an example
of the aggregation function, we may quantize the congestion
factor to the nearest integer.

A. Adaptive State Aggregation

We propose to use an aggregation function that maps the con-
gestion factor space into a discrete space, as we have assumed
in Section III-B. This function aggregates the adjacent conges-
tion factors into a representative average con-
gestion factor value , where is a subset of the set of con-
gestion factors . For example, and ,

. In this paper, we propose an adaptive state aggre-
gation method that iteratively adapts the aggregation function.
Let represents the adaptive aggregation function,
defined as follows:

(16)

where ,
, and . Note that rep-

resents the inverse function of , denotes the min-
imum value of the expected utility of the user starting from the
previous chunk, and is referred to the utility spacing that deter-
mines the aggregation function from the expected utility-to-go
domain.

B. Structural Properties

In this section, we develop some structural properties of
the optimal policy and corresponding value function, based
on which we will then discuss approximation results of the
value function. This approximation allows us to represent
the value function in a compact manner. Importantly, we are
able to control the computational complexity and achievable
performance by using different predetermined approximation
error thresholds .
We propose, in this section, a low-complexity online learning

algorithm based on an extension of the TD- Algorithm [24],
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described in Algorithm 1. The proposed learning method is
greatly impacted by the utility spacing . The number of states
in a chunk depends on the aggregation function
and the size of the average congestion set in the th chunk is

. We have the following theorem about
the learning error:
Theorem 1: After chunks, the learning error of the

state-value iteration is bounded by:

, where is the value function of the optimal
policy.

Proof: See Appendix B.

Algorithm 1: Online learning algorithm for POMDP-based
congestion control

Initialize for all possible application
parameters, congestion factor and updating policy;

Initialize , and ;

;

while true do

;

;

;

Get the new application parameters ;

Select the policy and congestion factor such as:
with probability , else

choose a random policy and congestion factor;

;

for do

Transmit packets using the updating policy and the
congestion factor ;

Update the congestion window based on (1);

, where is the number
of packets received before their delay deadlines.

end for

Update the beliefs based on (6);

end while

At the beginning of chunk , the user receives application
parameters from the upper layer, and selects the updating
policy and the congestion factor that maximize its state-value
function. Then, the user transmits its packets during the chunk
using the chosen policy. At the end of the chunk, the user updates
the state-value function based on observation. The following
lemma proves the convergence of the proposed algorithm.
Lemma 1: The proposed learning algorithm converges to the

optimal value function.
Proof: See Appendix C.

C. Implementation and Complexity

Although value iteration algorithms give an exact solution of
POMDP optimization problems, those algorithms require a time
and space complexity that may be prohibitively expensive. In

fact, to better understand the complexity of exactly solving the
POMDP problem, let be the number of -vectors in the
th chunk. In the worst case, the -vectors size in the th
chunk is (see [25]), and the running time will be

. It also requires solving a number of linear
programs for pruning vectors.
Interestingly, the proposed algorithm has a state space of

, where is the set of application parameters.
Moreover, our Learning-TCP algorithm has a polynomial time
complexity.
Note that introducing the chunk reduces not only the state

space, but also the complexity of solving the POMDP problem.
Furthermore, fixing users’ policies for some time (here we have
the chunk time) is important from networking point of view
as well. Since the user is dealing with other network users (al-
though they are aggregate in the congestion factor), it may take
time for this multiuser interaction to converge first. Note that the
performance of a user’s policy depends highly on the accuracy
of the other users impact. If we fix the policy for some time, we
know how to evaluate the resulting utility expectation and then
react to it. Changing the policy every RTT may make such ex-
pectation inaccurate.
The proposed algorithm is implemented only at the trans-

mitter side and is transparent for the receiver. We do not even
require any change at routers. Furthermore, as we have proved
that Learning-TCP is TCP-Friendly, any other congestion con-
trol algorithm can be implemented in parallel. For first chunks,
the Learning-TCP algorithmmay give suboptimal performance.
However, a near-optimal result can be obtained after a sufficient
number of chunks. Interestingly, we can significantly speed up
the learning and avoid this problem if the state-value functions
are initialized with values obtained the last time Learning-TCP
was used.

V. SIMULATIONS

In this section, we present some simulation results using
MATLAB-based simulations of our proposed Learning-
TCP algorithm. We consider that multimedia users are
transmitting video sequences at a variable bit rate of

. We assume that packets
can tolerate a delay of , and
we set the packet length to 1024 Bytes. Moreover, we assume
that each frame has an additive distortion per packet in the set

. We consider also a set of
policies composed of IIAD and SQRT policies defined as
follows:

(17)

(18)

where . We consider the set of average
congestion factors , and we set to 0.1.

A. TCP-Fairness

We focus on the fairness of our proposed Learning-TCP.
Fig. 2 shows how the proposed algorithm interacts with TCP
transported flows depending on QoS parameters chosen from
the set . In order to study this effect,
we simulate 10 connections: 5 with TCP and 5 connections
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Fig. 2. Fairness ratio of LEARNING-TCP for different source rates and delay
deadlines.

using the Learning-TCP algorithm, within different QoS re-
quirements and application parameters. We illustrate, in Fig. 2,
the fairness ratio depending on the delay deadline and source
rate. The fairness ratio (see [4] and [12]) is defined by the ratio
between the total throughput of Learning-TCP connections and
total throughput of TCP connections. The closer the fairness
ratio is to 1, the friendlier will the congestion control be to
other TCP flows. We observe that Learning-TCP has a fairness
ratio close to 1 except with hard deadline delay and high source
rate. In fact, as we can see in Fig. 2, when the delay deadline is
lower than 300 ms and the source rate is higher than 4 Mbps,
the fairness ratio is between 1.2 and 1.45. Indeed, with hard
deadline delays and high source rates, the user needs higher
throughput in order to satisfy its QoS requirements.

B. Learning-TCP Algorithms and Fixed-Policy Algorithms

Now, we investigate the interactions between Learning-TCP
and other multimedia congestion control algorithms. We con-
sider a bottleneck link of capacity 100 Mbps shared between
10 users (one Learning-TCP; one TCP and 8 users using Bi-
nomial congestion control) as described in Table II. We simu-
late a video transmission application during 350 time slots, and
we assume that users receive a new set of application param-
eters every chunk, . In order to illustrate the impact
of the delay on the congestion control algorithms, we assume
that the deadline delay is 133 ms in the first chunk, and that
it increases by 133 ms every chunk. A real use-case of these
simulation settings is a streaming application, where the user
may change the required quality at each chunk. For example,
let us consider a congested network, the user decreases at the
end of each chunk the required quality of the streaming, and
increases the deadline delay, thereby decreases the packet loss
probability. We observe, in Fig. 3, that the Learning-TCP uses
different policies for each delay deadline. For hard delay dead-
lines, we observe that the throughput of the Learning-TCP user
is higher than the throughput of other users. Fig. 4 illustrates
the throughput of TCP user and Fig. 5 illustrates the throughput
of Binomial congestion control users. Binomial-CC users obtain
the highest average throughput (9.2 Mbps Versus 7.65 Mbps for
TCP and 8.36 Mbps for Learning TCP). In fact, as we can see in
Fig. 3, the Learning-TCP gives the highest throughput for hard
delay deadlines. However, it is still TCP-friendlier in the av-
erage. Finally, Fig. 6 illustrates the variation of the congestion
window size with the number of TCP chunk. We observe that
the congestion window updating policy converges after 10 TCP

Fig. 3. Throughput of LEARNING-TCP.

Fig. 4. Throughput of TCP.

Fig. 5. Throughput of Binomial-CC.

Fig. 6. Congestion window size with the number of TCP chunks.

TABLE II
USERS IN THE NETWORK

chunks. Interestingly, we show in the next section, how the pro-
posed algorithm gives better video quality when obeying the
friendliness rule.

C. Performances of Learning-TCP Against Others Multimedia
Congestion Control Algorithms

In order to evaluate the video quality (measured through the
average Peak Signal to Noise Ratio (PSNR), in decibels) using
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Fig. 7. Average received video quality using different congestion control for
multimedia transmission.

Fig. 8. The percentage of packets delivered before their delay deadlines.

different congestion control algorithms, we simulate the trans-
mission of a video sequences with length of 50 s (CIF resolu-
tion, 50 Hz frame-rate) and compressed by anH.264/AVC codec
(any codec can be used, we used this one just for illustrative pur-
poses). We assume that users receive different values of source
rate and additive distortion per packet at every chunk. The delay
deadline varies between 133ms and 800ms. Fig. 7 illustrates the
video quality obtained with different congestion control algo-
rithms. We observe that the Learning-TCP leads to better video
quality. Therefore, our proposed approach outperforms others,
especially for real-time applications with hard deadline delay
such as video-conferencing applications for example. In fact, as
illustrated in Fig. 8, Learning-TCP users obtain the highest per-
centage of packets delivered before their delay deadline. Indeed,
our algorithm is able to optimize the congestion window by con-
sidering the distortion impact, delay deadline and the source
rate.

VI. CONCLUSION

We have formulated, in this paper, the media-aware conges-
tion control problem as a POMDP that explicitly takes into
consideration the multimedia streaming characteristics such as
delay constraints and distortion impacts. We have considered a
set of generic TCP-friendly congestion window updating func-
tions. The optimal policy allows the sender to optimize the con-
gestion window updating policy that maximizes the long term
expected quality of multimedia applications. We have proposed
an online learning method to solve the Learning-TCP on the
fly. Simulation results show that the proposed congestion con-
trol algorithm outperforms conventional TCP-friendly conges-
tion control schemes in terms of quality, especially for real-time

applications with hard delay deadlines. Moreover, the proposed
Learning-TCP algorithm is implemented only at the sender side,
and is transparent to routers and receivers. Hence, our proposed
method can easily and immediately be adopted for media-aware
TCP transmission without the need of standardization and it
can fairly and smoothly co-exist with existing TCP-solutions
for media streaming, while providing significant performance
improvements for the adopting devices.

APPENDIX A
PROOF OF PROPOSITION 1

The proof of this proposition is a generalization of the proof
of [3] and [26] made for . We extend this result for
a general updating policies , .
Denote by and the congestion windows of

the Learning-TCP transported flow and the TCP-Transported
flow respectively. Assume that both flows have the same RTT
and MSS. The effect due to different RTT and MSS is beyond
the scope of this paper and is an issue in our future work. On one
hand, when , the link is in the underload
region and thus, the congestion windows and
evolves as follows:

On the other hand, when , the link is
overloaded and congestion occurs. We assume that both flows
receive the congestion signal once congestion occurs and we
denote the th time that the link is congested. Both flows
decrease simultaneously their window based on the following
expression:

The duration between and is referred as the –th cycle
during which both flows increase their window. Therefore, we
have:

Thus, independent of the initial values of and
, after a sufficient number of cycles, the congestion

windows of these two flows in the overloaded region converge
to:
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Therefore, in the steady state, and increase and
decrease periodically. Their average throughput in steady state
are expressed by the following:

To guarantee the fairness between the flows, the necessary
and sufficient condition is:

(19)

APPENDIX B
PROOF OF THEOREM 1

Similar to [27], it can be shown that the convergence of the
online learning algorithm is equivalent to the convergence of
the following O.D.E.:

(20)

where the mapping is defined by:

A successive approximation iteration on a vector simply
replaces with . The successive approximation
method for the solution of (20) starts with a vector
chosen as a convex function, and sequentially computes

. Since the optimal state value function
is PWLC in the average congestion factor and , it
follows from Blackwell’s Sufficient Conditions that is a
sup-norm contraction mapping with modulus . Hence, we
have:

(21)

where is the composition of the mapping with itself
times. The convergence rate in (21) is geometric at a rate . The
rate of convergence can be improved using some error bounds
based on the residual difference of and . Therefore,
for all states , the solution of (20) satisfies:

(22)

Thus, after a chunk, the learning error is bounded by the fol-
lowing upper bound:

(23)

After 2 chunks, the learning error is bounded by:

Finally, we obtain by induction on the number of chunks
that after chunks, the learning error is bounded as follows:

APPENDIX C
PROOF OF LEMMA 1

The proof of this lemma follows from the Theorem 1 of [28].
In fact, Sarsa algorithm converges to the optimal values function
whenever the following assumptions hold:
1) The state space and the action space are finite,
2) satisfies , , e.g.,

,
3) The reward function is bounded.
It is straightforward that the previous assumptions hold for our
problem, and therefore, the Algorithm 1 converges to the op-
timal values function.
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